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Abstract

Formation energies, dipole forces and crystallographic characteristics of point defects (vacancies and self-interstitial

atoms) as elastic dipoles of different symmetry were defined for bcc V and Fe crystals by computer simulation methods

with use of modified interatomic interaction potentials. Stress fields and energy factors of screw, mixed (45�) and edge

dislocations in basic slip system of V and Fe crystals Æ1 1 1æ{1 1 0} were calculated in the framework of the anisotropic

theory of elasticity. Elastic interaction energies of the above mentioned point defects and dislocations were calculated

and the essential influence of these interactions (for vacancies via their saddle point positions especially) on formation

energies, crystallographic configurations (stable and unstable) and diffusion ways of point defects was shown. Critical

densities of dislocations were defined, at which their stress fields control the thermal mobility of point defects

throughout the whole crystal volume.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The development of physical models of all functional

properties (strength, plasticity, embrittlement, swelling,

etc.) of structural materials under irradiation demands a

detailed knowledge of the properties of point defects,

dislocations and their interactions in such materials (real

anisotropic crystals with different crystallographic sym-

metries). In spite of its importance, the problem of for-

mation, interactions and mobility of point defects and

dislocations is not investigated well enough to quanti-

tatively predict the evolution of point defects and dis-

locations under irradiation (bias factors, etc.) in real

anisotropic crystals with different types of point defects

(elastic dipoles) and dislocations [1–4].
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In this work, the formation energetics of self point

defects (vacancies, self-interstitial atoms (SIAs) as elastic

dipoles of different symmetries) with respect to crystal-

lography and interactions with screw, mixed 45� and

edge dislocations (SD, MD and ED respectively) in

Æ1 1 1æ{1 1 0} basic slip system was studied for bcc crys-

tals V and Fe, which are the basis element of advanced

structural materials (low activated, in that number) for

fusion and fission power reactors. Besides, Fe and V

crystals are typical bcc crystals with different factors of

elastic anisotropy A ¼ 2c44=ðc11 � c12Þ which are 2.36

and 0.78 for Fe and V (room temperature), respectively

(c11, c12, c44 are elastic constants). Therefore, the study

of defects in these crystals allows to estimate the role of

elastic anisotropy in the formation of defect micro-

structure of bcc crystals.

Computer simulation methods (for calculation of

point defects characteristics in crystals without disloca-

tions) and the linear anisotropic theory of elasticity (for

calculations of elastic fields of dislocations and their
ed.

mail to: chernovv@bochvar.ru


0.7

0.9

A.B. Sivak et al. / Journal of Nuclear Materials 323 (2003) 380–387 381
interactions with point defects) were used both for cal-

culations of interaction of point defects with dislocations

[3,5–9].
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Fig. 1. Interatomic potentials in bcc Fe and V crystals.
2. Elastic stress fields of dislocations

Dislocation stress fields rij (i, j ¼ 1, 2, 3, define the

coordinate axes in a dislocation coordinate system where

the axis 3 is along a dislocation) and energy factors KðuÞ
(u is an angle between the direction of the dislocation

and Burgers vector b) of arbitrary oriented straight

dislocations (SDs, MDs, EDs) in basic slip systems of

bcc crystals {1 1 0}Æ1 1 1æ, {1 1 2}Æ1 1 1æ) were calculated

for V and Fe crystals in the framework of anisotropic

theory of elasticity following algebraic method [1,7].

Values of Fe and V elastic constants (sometimes with

extrapolation) were taken from [1,10,11]. There is a

feature in bcc crystals (Æ1 1 1æ Burgers vector) that is

absent in fcc crystals (Æ1 1 0æ Burgers vector). It is the

existence of stress tensor diagonal components of SDs

with Burgers vector Æ1 1 1æ (dislocation is directed along

a symmetry axis of an odd order [1,6]). Calculated polar

diagrams K�1ðuÞ for above mentioned two basic slip

systems in V and Fe crystals at temperature up to 1000

K show the absence of concave regions, i.e. dislocations

keep straight forms [1,6].
Table 1

Correspondence of A–F elastic dipoles configurations to the

crystallographic directions in a bcc crystal for different values N

N A B C D E F

6 [1 1 0] [�11 1 0] [0 1 1] [0 1 �11] [1 0 1] [�11 0 1]

4 [1 1 1] [�11 1 1] [1 �11 1] [1 1 �11]
3 [1 0 0] [0 1 0] [0 0 1]
3. Crystal model and interatomic potentials

The model [12,13] used for studying defects in V and

Fe crystals describes the interatomic interactions in the

framework of pair central-symmetric interaction poten-

tials and takes into account effects of electron density

redistribution (effective accounting of non-central and

many-body interactions) by introducing a volume de-

pendent additive component into the crystal energy

density. The behaviour and properties of point defects

disturbing the crystal lattice and the results of modelling

of their properties essentially depend on the form (es-

pecially on the repulsive part) of the potential. Therefore

the procedure of parameterization of the V–V and Fe–

Fe potentials included not only the condition of exact

accordance to equilibrium crystal properties (experi-

mental values of lattice constant and elastic constants)

but the condition of satisfaction to the equation of state

of crystals under high pressures [14–16] and the condi-

tion of asymptotic transition of analytical form of the

calculated potential to the universal Coulomb interac-

tion screening potential [17]. Fig. 1 is a plot of inter-

atomic potentials in V and Fe crystals calculated in the

framework of the above-stated algorithm.

The computational cell is a cube of size 11 lattice

parameters on edge under a fixed boundary condition.

Such sizes of the computational cell ensured accuracy of
calculations of characteristics of point defects within the

limits of 0.5%.

A point defect in a crystal lattice causes surrounding

atoms to be displaced from their ideal positions, thus

determining the configuration of the elastic dipole pro-

duced in the lattice and characterized by dipole tensor Pij
[2,3,5]. The tensor Pij is represented in terms of the three

eigenvalues P ðsÞ (s ¼ 1, 2, 3) and eigenvectors eðsÞ since

the principal axes eðsÞ are completely determined by the

local symmetry of the defect configuration. The sym-

metry of the resulting defect configuration (tetragonal

Æ1 0 0æ, trigonal Æ1 1 1æ, orthorhombic Æ1 1 0æ in depen-

dence on the eigenvalues P ð1Þ, P ð2Þ, P ð3Þ), as a rule, is

lower than the local symmetry of the bcc lattice. This

implies the presence of N crystallographically equivalent

orientations of the elastic dipoles (orientations A,

B,. . .,F, Table 1). The number N of such orientations

corresponds to the specified principal eigenvector eð1Þ

[3,9].

Calculations of dipole tensors and relaxation vol-

umes of point defects were performed using algorithms

[18,19]. Tables 2 and 3 list calculated values of the for-

mation energies EF, the relaxation volumes V R and the

three eigenvalues P ðsÞ of different point defects as elastic

dipoles in Fe and V crystals without internal stresses

(without dislocations). The formation energy of a par-

ticular point defect configuration in Fe and V crystals

increases in different sequences. In Fe crystal: Æ1 1 0æ
dumbbell, Æ1 1 1æ dumbbell, crowdion, tetrahedral,



Table 2

Characteristics of the point defect configurations (elastic dipoles) in Fe

Configuration EF, eV V R, X P ð1Þ, eV P ð2Þ, eV P ð3Þ, eV eð1Þ eð2Þ eð3Þ N

Æ1 1 0æ dumbbell 5.20 1.47 22.94 12.98 20.33 (1 1 0) ()1 1 0) (0 0 1) 6

Æ1 1 0æ dumbbell saddle point 5.45 1.47 27.73 15.59 12.78 (1 1.11 1) (1 0)1) (1)1.8 1)
Æ1 1 1æ dumbbell 5.42 1.43 30.91 11.80 11.80 (1 1 1) (1)1 0) (1 1)2) 4

Æ1 0 0æ dumbbell 6.26 1.16 19.77 12.28 12.28 (1 0 0) (0 1 0) (0 0 1) 3

Octahedral 6.11 1.17 21.01 11.77 11.77 (1 0 0) (0 1 0) (0 0 1) 3

Tetrahedral 5.86 1.28 15.52 16.65 16.65 (1 0 0) (0 1 0) (0 0 1) 3

Crowdion 5.44 1.43 30.89 11.92 11.92 (1 1 1) (1)1 0) (1 1)2) 4

Vacancy 1.85 )0.13 )1.69 )1.69 )1.69 (1 0 0) (0 1 0) (0 0 1) 1

Vacancy saddle point 2.59 )0.08 )3.33 0.11 0.11 (1 1 1) (1)1 0) (1 1)2) 4

Divacancyh100i 3.40 )0.35 )6.05 )3.63 )3.63 (1 0 0) (0 1 0) (0 0 1) 3

Divacancyh111i 3.63 )0.22 )1.27 )3.64 )3.64 (1 1 1) (1)1 0) (1 1)2) 4

Di-SIAa 9.47 2.83 43.93 23.84 40.08 (1 1 0) ()1 1 0) (0 0 1) 6

Di-SIA

Crowdion ()0.5)0.5 1.5) +
Crowdion (0.5 0.5 0.5)

9.62 2.88 62.07 24.86 22.91 (1 1 0.89) ()1 1 0) (1 1)2.25)

aA couple of Æ1 1 0æ dumbbell configurations which axes are parallel to each other and centres are in the nearest neighbours positions in bcc lattice located along the perpendicular

to the dumbbells axes.

Table 3

Characteristics of the point defect configurations (elastic dipoles) in V

Configuration EF, eV V R, X P ð1Þ, eV P ð2Þ, eV P ð3Þ, eV eð1Þ eð2Þ eð3Þ N

Æ1 1 0æ dumbbell 5.76 1.32 21.14 13.36 20.31 (1 1 0) ()1 1 0) (0 0 1) 6

Æ1 1 1æ dumbbell 5.68 1.07 23.73 10.23 10.23 (1 1 1) (1)1 0) (1 1)2) 4

Æ1 0 0æ dumbbell 4.67 0.67 11.90 7.89 7.89 (1 0 0) (0 1 0) (0 0 1) 3

Octahedral 4.93 0.80 14.70 9.13 9.13 (1 0 0) (0 1 0) (0 0 1) 3

Tetrahedral 5.36 0.95 13.29 12.95 12.95 (1 0 0) (0 1 0) (0 0 1) 3

Crowdion 5.72 1.08 24.02 10.29 10.29 (1 1 1) (1)1 0) (1 1)2) 4

Vacancy VI 2.24 )0.28 )3.81 )3.81 )3.81 (1 0 0) (0 1 0) (0 0 1) 1

Vacancy VIIa 1.73 )0.62 )8.61 )8.61 )8.61 (1 0 0) (0 1 0) (0 0 1) 1

Vacancy saddle point 2.71 )0.26 )5.88 )2.37 )2.37 (1 1 1) (1)1 0) (1 1)2) 4

Divacancyh100i 3.94 )0.65 )9.75 )8.64 )8.64 (1 0 0) (0 1 0) (0 0 1) 3

Divacancyh111i 4.35 )0.60 )6.54 )9.22 )9.22 (1 1 1) (1)1 0) (1 1)2) 4

Di-SIA

Oct(0 0 1) +Oct(1)1 0) 9.17 1.52 19.44 16.48 27.12 (1 1 0) ()1 1 0) (0 0 1) 6

Di-SIA

Oct(1 0 0) +Oct(0 1 0) 9.41 1.73 25.83 24.93 20.93 (1 1 0) ()1 1 0) (0 0 1) 6

a This vacancy configuration VII (non-considering further) has lower symmetry order in comparison with vacancy configuration VI but still keeps spherical symmetry of long-

range elastic field.
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Table 4

Binding energy E0 of considered SD, MD and ED in

(�11 1 0)[1 1 1] slip plane with SIA and vacancy configurations in

Fe, eV

Configuration Orientation Dislocation type

SD MD ED
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octahedral, Æ1 0 0æ dumbbell; in V crystal: Æ1 0 0æ dumb-

bell, octahedral, tetrahedral, Æ1 1 1æ dumbbell, crowdion,

Æ1 1 0æ dumbbell. Thus, Æ1 1 0æ and Æ1 0 0æ dumbbells are

the most stable point defect configurations in Fe and V

crystals without internal stresses (without dislocations)

respectively.
Æ1 1 0æ dumbbell A 0.291 1.621 2.102

B 0.570 0.808 1.518

C 0.291 1.631 2.083

D 0.570 1.170 1.485

E 0.291 1.631 2.083

F 0.570 1.170 1.485

Æ1 0 0æ dumbbell A 0.696 1.307 1.502

B 0.696 1.307 1.502

C 0.696 0.724 1.452

Æ1 1 1æ dumbbell A 0.191 2.485 3.056

B 0.747 1.152 1.563

C 0.747 1.152 1.563

D 0.747 1.177 1.210

Octahedral A 0.841 1.410 1.577

B 0.841 1.410 1.577

C 0.841 0.662 1.477

Tetrahedral A 0.282 1.099 1.526

B 0.282 1.099 1.526

C 0.282 1.161 1.507

Crowdion A 0.193 2.481 3.052

B 0.743 1.153 1.568

C 0.743 1.153 1.568

D 0.743 1.182 1.220

Vacancy 0.027 0.116 0.158

Vacancy saddle

point

A 0.002 0.294 0.354

B 0.123 0.163 0.154

C 0.123 0.163 0.154

D 0.123 0.098 0.029
4. Interaction of dislocations with point defects (elastic

dipoles)

The amplitude and angular functions of the elastic

interaction between dislocations and elastic dipoles de-

pend on the types of dislocations. In this study SD, MD

and ED with Burgers vector b ¼ a=2 [1 1 1] (a is the

lattice constant) in basic slip system (�11 1 0)[1 1 1] were
considered.

The formation energy of a point defect configuration

in the neighbourhood of a dislocation can change be-

cause of the interaction between the point defect and the

elastic dislocation field:

EF
d ¼ EF þ EintðrÞ; ð1Þ

where EF
d is the formation energy of the point defect in

the presence of the dislocation stress field and r is the

radius-vector of the position of the point defect with

respect to the dislocation line.

The interaction energy Eint within the framework of

the theory of elasticity is given by [3,5–9]

EintðrÞ ¼ �PijedijðrÞ ¼ E0

b
r
f ðuÞ;

Z 2p

0

½f ðuÞ�2 du ¼ p:

ð2Þ

Here edij is the elastic-strain tensor caused by a disloca-

tion, E0 is the dislocation–point defect binding energy

and function f ðuÞ specifies the angular dependence of

the interaction energy. Tables 4 and 5 list values of the

binding energies E0 of different point defects configura-

tions.

Taking relations (1) and (2) into account, one can

determine the sequence of point defects (elastic dipoles)

configurations in ascending sort of their formation en-

ergy EF
d in the presence of different types of dislocations

(SD, MD, ED) for different regions specified by the ra-

dius-vector r. The configuration that occurs in the

neighbourhood of a dislocation should have the lowest

energy EF
d . Tables 6 and 7 give the SIA configurations in

particular orientations (disorientation angles between

Burgers vector and the SIA eigenvector eð1Þ are also gi-

ven) with the lowest formation energy EF
d in the field of

considered dislocations at different distances from the

dislocation in Fe and V crystals. Dependencies of

formation energy EF
d of these and some other configu-

rations on distance to the dislocation are shown at Figs.

2–5. Fig. 2 also illustrates that the dislocation stress field
inserts a distinction between different orientations of the

same point defect configurations.

4.1. Iron crystal

The radius-vectors delineating regions of stabiliza-

tion of crowdion and Æ1 1 1æ dumbbell configurations by

dislocation elastic fields take on values rs � 1 b and

re � 4 b for SD and ED, respectively (Table 6).

The migration of a SIA to a SD occurs in the fol-

lowing sequence. As a result of diffusion through the

lattice, the SIA far from the SD appears in the neigh-

bourhood of the dislocation, where its Æ1 1 0æ dumbbell

configuration is energetically disadvantageous. There-

fore, this configuration changes into Æ1 1 1æ dumbbell

and crowdion configurations making it easier for the

SIA to reach the SD.



Table 6

SIA configurations with the lowest formation energy EF
d in the field of

from the dislocation in Fe

r, b Configuration

Screw dislocation

<0.8 Æ1 1 1æ dumbbell or crowdion

>0.8 Æ1 1 0æ dumbbell

Edge dislocation

<4.3 Æ1 1 1æ dumbbell or crowdion

>4.3 Æ1 1 0æ dumbbell

Mixed 45� dislocation
<3.9 Æ1 1 1æ dumbbell or crowdion

>3.9 Æ1 1 0æ dumbbell

Table 5

Binding energy E0 of considered SD, MD and ED in

(�11 1 0)[1 1 1] slip plane with SIA and vacancy configurations in

V, eV

Configuration Orientation Dislocation type

SD MD ED

Æ1 1 0æ dumbbell A 0.120 1.283 1.763

B 0.543 0.553 1.012

C 0.120 1.214 1.550

D 0.543 0.851 1.167

E 0.120 1.214 1.550

F 0.543 0.851 1.167

Æ100æ dumbbell A 0.289 0.588 0.696

B 0.289 0.588 0.696

C 0.289 0.328 0.689

Æ1 1 1æ dumbbell A 0.038 1.784 2.241

B 0.740 0.808 1.035

C 0.740 0.808 1.035

D 0.740 0.854 0.904

Octahedral A 0.401 0.735 0.848

B 0.401 0.735 0.848

C 0.401 0.364 0.828

Tetrahedral A 0.054 0.661 0.929

B 0.054 0.661 0.929

C 0.054 0.643 0.932

Crowdion A 0.038 1.809 2.272

B 0.753 0.820 1.048

C 0.753 0.820 1.048

D 0.753 0.864 0.911

Vacancy 0.014 0.191 0.271

Vacancy saddle

point

A 0.009 0.450 0.564

B 0.192 0.206 0.257

C 0.192 0.206 0.257

D 0.192 0.211 0.215
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The migration of a SIA to an ED differs from the

migration to a SD. The SIA that is far from the dislo-

cation migrates in the direction where its interaction

energy with the ED decreases, reaches the neighbour-

hood re � 4 b where its Æ1 1 0æ dumbbell configuration is

energetically disadvantageous. Consequently the SIA

forms Æ1 1 1æ dumbbell configuration in the A orientation

(parallel to the Burgers vector, Table 1), which gives rise

to one-dimensional diffusion in the neighbourhood of

the ED. The SIA migrates along the [1 1 1] axis in a

plane parallel to the slip plane of the ED. The transition

of the SIA to a plane, which is closer to the slip plane

and, therefore, to the dislocation, requires a consider-

able energy.

Thus, the qualitative difference between migration of

a SIA to an ED or a SD is that the SIA �hovers’ at
distances re � 4 b in the neighbourhood of the ED in the

form of Æ1 1 1æ dumbbell configuration with the principal

axis parallel to the direction of the Burgers vector.

The migration of a vacancy to a dislocation is gov-

erned by interaction between the vacancy saddle point

configuration (Æ1 1 1æ elastic dipole) and the dislocation.

The interaction energies demonstrate that vacancy

reaches the SD and �hovers’ at some distance from the ED.
4.2. Vanadium crystal

The radius-vectors delineating regions of stabiliza-

tion of crowdion and Æ1 1 1æ dumbbell configurations by

dislocation elastic fields take on values rs � 0:5 b and

re � 1:5 b for a SD and an ED, respectively (Table 7).

The migration of SIAs and vacancies in V crystal

does not qualitative differ from the migration in Fe

crystal with the exception of the most stable SIA con-

figuration far from dislocation (Æ1 0 0æ and Æ1 1 0æ dumb-

bell configurations in V and Fe crystals, respectively).
SD, MD and ED in (�11 1 0)[1 1 1] slip plane at different distances

Orientation Disorientation angle (b^eð1Þ)

B, C, D 70.53�
B, D, F 90�

A 0�
A, C, E 35.26�

A 0�
A, C, E 35.26�



Table 7

SIA configurations with the lowest formation energy EF
d in the field of SD, MD and ED in (�11 1 0)[1 1 1] slip plane at different distances

from the dislocation in V

r, b Configuration Orientation Disorientation angle (b^eð1Þ)

Screw dislocation

<0.5 Æ1 1 1æ dumbbell or crowdion B, C, D 70.53�
>0.5 Æ1 0 0æ dumbbell A–C 54.74�

Edge dislocation

<1.6 Æ1 1 1æ dumbbell or crowdion A 0�
>1.6 Æ1 0 0æ dumbbell A–C 54.74�

Mixed 45� dislocation
<1.2 Æ1 1 1æ dumbbell or crowdion A 0�
>1.2 Æ1 0 0æ dumbbell A, B 54.74�
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4.3. Critical densities of dislocations

Fields of dislocations govern the thermal mobility of

point defects at some temperature T throughout the

whole crystal volume at some critical density qc of dis-

locations if the interaction energy Eint is larger than

value of kBT in the whole crystal volume (kB is Boltz-

mann’s constant). So critical density qc can be calculated

as qc ¼ 1
2S where S is area of the capture range within

which the interaction energy �dislocation–point defect’ is
larger than value of kBT .

Using the values of critical densities of dislocations,

average distances from dislocations where dislocations

control the thermal mobility of point defects at 20 �C
(the interaction energy is larger than 0.025 eV) were
calculated (Table 8). Obtained results show that if we

take into account vacancy saddle point configurations,

the ranges of the essential influence of dislocation fields

on a vacancy increase in several times and the difference

(bias factor) of this range between a SIA and a vacancy

reduces. This difference is considerably less in V than in

Fe as indicated in Table 8.

Analogous calculations on computer simulation of

the interaction between an ED in the slip system

Æ1 1 1æ{1 1 0} with SIAs and a vacancy in Fe crystal were

performed in [20]. The results are qualitatively alike.

Quantitative differences can be explained by essential

differences in the relaxation volumes of SIAs and a
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vacancy caused by use of another interatomic potential

in [20].
5. Conclusion

(1) Elastic stress fields and energy factors of screw,

mixed 45� and edge dislocations (SD, MD, ED) in basic

slip systems Æ1 1 1æ{1 1 0} and Æ1 1 1æ{1 1 2} were calcu-

lated in the framework of anisotropic theory of elasticity

for bcc V and Fe crystals. The straight form stability of

dislocations was researched and was shown that dislo-

cations in V and Fe crystals kept straight forms at

temperature up to 1000 K.

(2) Crystallographic characteristics of self point de-

fects (vacancies and SIAs as elastic dipoles of different

symmetries in stable and metastable positions) were
Table 8

Average distance where dislocation in (�11 1 0)[1 1 1] slip plane controls t

Metal

Fe

SD ED

Dumbbella 20.2 74.5

Vacancy 1.0 5.6

Vacancy saddle point 4.4 12.6

Configuration: SD, ED.
a Æ1 1 0æ and Æ1 0 0æ dumbbell configurations for Fe and V, respectiv
defined in bcc V and Fe crystals by computer simulation

methods with use of suggested interatomic potentials

(formation and migration energies, relaxation volumes,

dipole tensors and their orientations). Æ1 1 0æ and Æ1 0 0æ
dumbbells are the most stable point defect configura-

tions in Fe and V crystals without internal stresses

(without dislocations) respectively.

(3) Energies of elastic interaction between point de-

fects and SDs, MDs and EDs in Æ1 1 1æ{1 1 0} slip system

were calculated for bcc V and Fe crystals and essential

influence of these interactions on the characteristics of

point defects (formation energies, stable and unstable

crystallographic configurations, diffusion ways) was

shown.

The interaction of a dislocation with a SIA can lead

to the stabilization of the SIA configurations that are

metastable in the absence of dislocation elastic field.
he thermal mobility of point defect at 20 �C (Eint > 0:025 eV), b

V

SD ED

10.2 24.0

0.5 9.6

6.9 19.8

ely (configurations with the lowest formation energy EF).
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In Fe crystal the region of stabilization of the crow-

dion and the Æ1 1 1æ dumbbell configurations in the

presence of a SD is rs � 1 b, and the axis of the Æ1 1 1æ
dumbbell or the crowdion is oriented to the dislocation

line. The region of stabilization of the crowdion and the

Æ1 1 1æ dumbbell configurations in the presence of an ED

dislocation is re � 4 b, and the axis of the Æ1 1 1æ
dumbbell or the crowdion is oriented in the direction of

the Burgers vector b ¼ a=2 [1 1 1].

Stable SIA configurations and orientations in the

nearest-neighbourhood of SDs and EDs are the same in

V and Fe crystals. In V crystal the radius-vectors de-

lineating regions of stabilization take on values rs � 0:5
b and re � 1:5 b for a SD and ED, respectively.

The migration of a SIA and a vacancy in V crystal

does not qualitative differ from themigration in Fe crystal

with the exception of the most stable SIA configuration

far from dislocation (Æ1 0 0æ and Æ1 1 0æ dumbbell config-

urations in V and Fe crystals, respectively).

The elastic field of an ED stabilizes the crowdion and

Æ1 1 1æ dumbbell configurations in the orientation such as

to cause the SIA to �hover’ at some distance from the

ED. The SD stabilizes these configurations in an orien-

tation that makes it easier for the SIA to reach the

dislocation.

The elastic field of the SD makes preferable the mi-

gration way of a vacancy to the dislocation. A vacancy

�hovers’ at some distance from the ED.

(4) Critical densities of SD, MD and ED were defined

at which their stress fields control thermal mobility of

point defects throughout the whole crystal volume (the

interaction energies of �dislocation–point defect’ are

more than the energy of thermal fluctuations). Using

these values, average distances from dislocations where

they control thermal mobility of point defects at 20 �C
were calculated.

(5) The interaction energies between vacancy saddle

point configurations and dislocations in bcc crystals (V,

Fe) are higher than the interaction energy between dis-

locations and vacancies in their stable configurations.

Dislocations govern vacancy thermal mobility via va-

cancy saddle points. Taking into account the vacancy

saddle point configurations, the range of the essential

influence of dislocation fields on vacancies increases in

several times and the difference of this range between a
SIA and a vacancy (bias factor) reduces. This difference

is considerably less in V than in Fe crystal.
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